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Periodic, nearly stationary solutions of the problem of motion of a rigid bo-
dy about a fixed point are obtained by applying the Liapunov method [1] to the
system of equations of motion,

The initial system of equations in isothermal coordinates [2]
(1
=y + U, y = Qz' <+ Uy

admits the Jacobi integral
(2)
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Here Q, ¢ and p are specified functions of z and y; U, is the force functi-
on; £ and f are the energy and area constants,
The stationary solutions are given by the equations

(3
Ueg=Uy=U=0

Eliminating the points |¢|=|p| =1, we can write(3)in the form

We=0, Wy=0 h+W=20
The first two equations define the coordinates of the set of points {Pr (zor (), ¥or (D)}
corresponding to the stationary motions and the third equation defines, for each of these
points, the appropriate value of the Jacobi constant,

We assume that a stationary rotation  Po (), kg (). is given, We shall constr-
uct periodic solutions of the system (1) with the value of the parameter [ fixed in the
neighborhood of the point Pq. Letusset z=zo-+ &, y=yo+ 1. Equations (1)
and (2) will now become

8+ Q2+ §, ot MW —Ug(@+ & yotn; B)=0 (4)
N —Q (2 + §, yo+n)§'--U;‘(xo+§, Yot mi k) =20
2402 —2U(m+ & vot+m =0
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where h  is the Jacobi constant for the perturbed motion. The zero solution of this sy-
stem with 2 = hy corresponds to the stationary motion specified above,

We construct the periodic solutions of the system (4) using the Liapunov theorem on
holomorphic integral 1], and obtain them in the form of series in powers of the parame-
ter ¢, which in the present case depends on k. The solution sought becomes zero
when ¢= ¢ and then p = b, Let us set

N - - (8)
£= 3 2, g = 2 ¢y, h=hyt 3 ¢k,

s==1 s=1 Sy

where h, are constants and 2®, y'®  are Twperiodic functions of ¥ The period
can be written as

oo « (6)

We introduce a new parameter y == vt and seek the solution in the form
. M
2 = a0 D) (o7 oo ru 4 bg) sin ru)

r=l
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Pox
The first approximation equations are

d2e D) dy(l)
v g+ Quvo—gy— + az®) - By(l) =0

201 dz™®
vg? “%%g’"' — Qovo —g5; + B=' 4 W =0

(@ = —%Waxoy B = —%oWayo, ¥ = —#o W yyo)

whete the zero subscript corresponds to the values z == 2y, ¥ = Vo.

The frequencies are given by
®

vo = 2% ta + v+ Q@ & e+ v+ QP - & (ay — P

Let us consider two possible cases,
1) ay —f2 > 0(W  attains an extremal value at Po) in which case we have two

different frequencies when the inequality
Q¢ >2 oy — B —o—7

holds (this condition always holds at the maximum points of the function W
2y ey —f L0 (W has a saddie point at Py) when we have a single frequ~

ency given by the formula (8) with the plus sign,
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In the case 1) every frequency corresponds to a single family of periodic motions
dependent on the arbitrary parameter ¢, while in the case 2) we have one such fam-
ily.

The first approximation for the family of periodic solutions corresponding to the
frequency v, is obtained in the form

z=1z¢+ (v* —Y)csinu
¥ = yo + ¢ (B sin u — Qqv cO8 u)

cv,? 2 2
k= ho+ =5 [(vo2— 7)2 4 P24 Q%71

In the first approximation the periodic trajectories represent similar ellipses with
a common center P, . The axis of these ellipses form the following angle with the, z+
axiss
4 2B (v — 7)
2 2 IR —p— G

Each trajectory corresponds to a single value of the Jacobi constant,

In terms of the Euler angles the above motion represents a superposition of nutation-
al oscillations of small amplitude and of small oscillations about the axis of self-rota-
tion, on the perturbed precession with periodically varying velocity,

In the case when the frequencies defined by (8) are incommensurable, all subsequ-
ent coefficients appearing in the series (6) and (7) as well as 4, can be found. The
series will converge absolutely for every ¢ aslongas|¢| does not exceed a cer-
tain limit, The coordinates are connected with time by means of the following expres-

sions
T

t——tO=Su(x('r),y(‘H)dr
0
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